## ESERCIZI DI FISICA

- 1. Una palla da tennis ha la massa di 57g e il diametro di 8,2cm.
  - (a) trova il momento di inerzia rispetto ad un asse passante per il suo centro;
  - (b) la pallina, inizialmente soggetta ad un moto di pura traslazione, dopo un colpo di racchetta si mette a ruotare, arrivando in 0,2s alla velocità angolare di  $15\frac{rad}{s}$ ; calcola l'intensità della forza tangenziale che ha agito sulla pallina;
  - (c) calcola il numero di giri compiuti dalla pallina in 0,2s.
- 2. Una carrucola la cui puleggia di sezione cilindrica ha una massa di 20 kg e raggio di 15cm, fa scendere per mezzo di una fune di peso trascurabile una massa di 10 kg.
  - (a) utilizzando la tabella, calcola il momento di inerzia della carrucola;
  - (b) individua le forze che agiscono sulla massa di 10 kg;
  - (c) calcola il momento di ciascuna forza rispetto al punto di tangenza fra la fune e la ruota;
  - (d) calcola il momento risultante delle forze e l'accelerazione angolare della puleggia;
  - (e) calcola l'accelerazione lineare del corpo di 10kg;
  - (f) calcola la tensione della fune;
  - (g) se la massa di 10kg è inizialmente ferma, calcola quale distanza percorre prima che la sua velocità sia di  $10\frac{m}{s}$ ;
  - (h) calcola qual è la velocità angolare della puleggia in quell'istante.
- 3. In figura sono rappresentate due masse  $m_1 = 2$  kg e  $M_2 = 5$  kg, collegate mediante una carrucola di massa  $m_c = 3$ kg. Il raggio della carrucola è 12 cm.
  - (a) qual è l'accelerazione della massa  $M_2$ , supponendo che non vi sia attrito fra massa e tavolo?
  - (b) qual è l'accelerazione della massa  $M_2$ , supponendo che fra massa e tavolo vi sia un coefficiente di attrito  $\mu = 0.35$ ?

